Adaptive Multiresolution Analysis on the Dyadic Topological Group
نویسندگان
چکیده
منابع مشابه
Multiresolution analysis on multidimensional dyadic grids
We propose a modified adaptive multiresolution scheme for representing d-dimensional signals which is based on cell-average discretization in dyadic grids. A dyadic grid is an hierarchy of meshes where a cell at a certain level is partitioned into two equal children at the next refined level by hyperplanes perpendicular to one of the coordinate axes which varies cyclically from level to level. ...
متن کاملWavelet Analysis on the Cantor Dyadic Group
Compactly supported orthogonal wavelets are built on the Cantor dyadic group (the dyadic or a-series local field). Necessary and sufficient conditions are given on a trigonometric polynomial scaling filter for a multiresolution analysis to result. A Lipschitz regularity condition is defined and an unconditional P-convergence result is given for regular wavelet expansions (p > 1). Wavelets are g...
متن کاملShannon Multiresolution Analysis on the Heisenberg Group *
We present a notion of frame multiresolution analysis on the Heisenberg group, abbreviated by FMRA, and study its properties. Using the irreducible representations of this group, we shall define a sinc-type function which is our starting point for obtaining the scaling function. Further, we shall give a concrete example of a wavelet FMRA on the Heisenberg group which is analogous to the Shannon...
متن کاملMultiresolution analysis on the symmetric group
There is no generally accepted way to define wavelets on permutations. We address this issue by introducing the notion of coset based multiresolution analysis (CMRA) on the symmetric group, find the corresponding wavelet functions, and describe a fast wavelet transform for sparse signals. We discuss potential applications in ranking, sparse approximation, and multi-object tracking.
متن کاملAdaptive multiresolution analysis based on anisotropic triangulations
A simple greedy refinement procedure for the generation of data-adapted triangulations is proposed and studied. Given a function f of two variables, the algorithm produces a hierarchy of triangulations (Dj)j≥0 and piecewise polynomial approximations of f on these triangulations. The refinement procedure consists in bisecting a triangle T in a direction which is chosen so as to minimize the loca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1999
ISSN: 0021-9045
DOI: 10.1006/jath.1998.3234